A Baskakov type generalization of statistical Korovkin theory
نویسندگان
چکیده
منابع مشابه
Generalization of Statistical Korovkin Theorems
The classical Korovkin theory enables us to approximate a function by means of positive linear operators (see, e.g., [1– 3]). In recent years, this theory has been quite improved by some efficient tools inmathematics such as the concept of statistical convergence from summability theory, the fuzzy logic theory, the complex functions theory, the theory of q-calculus, and the theory of fractional...
متن کاملStatistical Convergence Applied to Korovkin-type Approximation Theory
We present two general sequences of positive linear operators. The first is introduced by using a class of dependent random variables, and the second is a mixture between two linear operators of discrete type. Our goal is to study their statistical convergence to the approximated function. This type of convergence can replace classical results provided by Bohman-Korovkin theorem. A particular c...
متن کاملA - Statistical extension of the Korovkin type approximation theorem
Let A = (a jn) be an infinite summability matrix. For a given sequence x := (xn), the A-transform of x, denoted by Ax := ((Ax) j), is given by (Ax) j = ∑n=1 a jnxn provided the series converges for each j ∈ N, the set of all natural numbers. We say that A is regular if limAx = L whenever limx = L [4]. Assume that A is a non-negative regular summability matrix. Then x = (xn) is said to be A-stat...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Korovkin type approximation theorems in B-statistical sense
In this paper we consider the notion of A2 -statistical convergence for real double sequences which is an extension of the notion of AI -statistical convergence for real single sequences introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section, we study the rate of A2 -statistical convergence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.08.040